Periodicity and the Determinant Bundle

نویسنده

  • FRÉDÉRIC ROCHON
چکیده

The infinite matrix ‘Schwartz’ group G−∞ is a classifying group for odd K-theory and carries Chern classes in each odd dimension, generating the cohomology. These classes are closely related to the Fredholm determinant on G−∞. We show that while the higher (even, Schwartz) loop groups of G−∞, again classifying for odd K-theory, do not carry multiplicative determinants generating the first Chern class, ‘dressed’ extensions, corresponding to a star product, do carry such functions. We use these to discuss Bott periodicity for the determinant bundle and the eta invariant. In so doing we relate two distinct extensions of the eta invariant, to self-adjoint elliptic operators and to elliptic invertible suspended families and show that the corresponding τ invariant is a determinant in this sense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perioditicity and the Determinant Bundle

The infinite matrix ‘Schwartz’ group G−∞ is a classifying group for odd K-theory and carries Chern classes in each odd dimension, generating the cohomology. These classes are closely related to the Fredholm determinant on G−∞. We show that while the higher (even, Schwartz) loop groups of G−∞, again classifying for odd K-theory, do not carry multiplicative determinants generating the first Chern...

متن کامل

اثر تناوب بهره‌برداری سقز بر زادآوری طبیعی درختان بنه (مطالعه موردی: جنگل‌های بنه استان کردستان، سنندج)

In order to evaluate the impacts of oleo-gum resin extraction periodicity on natural regeneration of wild pistachio (Pistacia atlantica subsp. kurdica), three different forest areas in Kurdistan province, west of Iran, were selected based on difference extraction periodicities (regular periodicity, irregular periodicity and without periodicity). Then homogenous unit maps in GIS produced, and on...

متن کامل

On the nature of solutions of the difference equation $mathbf{x_{n+1}=x_{n}x_{n-3}-1}$

We investigate the long-term behavior of solutions of the difference equation[ x_{n+1}=x_{n}x_{n-3}-1 ,, n=0 ,, 1 ,, ldots ,, ]noindent where the initial conditions $x_{-3} ,, x_{-2} ,, x_{-1} ,, x_{0}$ are real numbers.  In particular, we look at the periodicity and asymptotic periodicity of solutions, as well as the existence of unbounded solutions.

متن کامل

Correspondences, Von Neumann Algebras and Holomorphic L 2 Torsion

Given a holomorphic Hilbertian bundle on a compact complex manifold, we introduce the notion of holomorphic L 2 torsion, which lies in the determinant line of the twisted L 2 Dolbeault cohomology and represents a volume element there. Here we utilise the theory of determinant lines of Hilbertian modules over finite von Neumann algebras as developed in [CFM]. This specialises to the Ray-Singer-Q...

متن کامل

The Determinant Line Bundle over Moduli Spaces of Instantons on Abelian Surfaces

We study the determinant line bundle over moduli space of stable bundles on abelian surfaces. We evaluate their analytic torsions. We extend Mukai's version of the Parseval Theorem to L 2 metrics on cohomology groups. We prove that the Mukai transform preserves the determinant line bundle as a hermitian line bundle. This is done by induction via the natural boundary of the moduli spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006